
Abstract

General Description The MAX4188/MAX4189/MAX4190 are low-power, current-feedback video amplifiers featuring fast disable/enable times and low switching transients. The triple MAX4188 and the single MAX4190 are optimized for applications with closed-loop gains of $+2 \mathrm{~V} / \mathrm{V}(6 \mathrm{~dB})$ or greater and provide a -3 dB bandwidth of 200 MHz and 185 MHz , respectively. The triple MAX4189 is optimized for closed-loop applications with gains of $+1 \mathrm{~V} / \mathrm{V}$ (0dB) or greater and provides a $250 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth. These amplifiers feature 0.1 dB gain flatness up to 80 MHz with differential gain and phase errors of 0.03% and 0.05°. These features make the MAX4188 family ideal for video applications. The MAX4188/MAX4189/MAX4190 operate from a +5 V single supply or from $\pm 2.25 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supplies. These amplifiers consume only 1.5 mA per amplifier and are capable of delivering $\pm 55 \mathrm{~mA}$ of output current, making them ideal for portable and battery-powered equipment. The MAX4188/MAX4189/MAX4190 have a high-speed disable/enable mode that isolates the inputs, places the outputs in a high-impedance state, and reduces the supply current to $450 \mu \mathrm{~A}$ per amplifier. Each amplifier can be disabled independently. High off isolation, low switching transient, and fast enable/disable times (120ns/35ns) allow these amplifiers to be used in a wide range of multiplexer applications. A settling time of 22 ns to 0.1%, a slew rate of up to $350 \mathrm{~V} / \mu \mathrm{s}$, and low distortion make these devices useful in many generalpurpose, high-speed applications. The MAX4188/MAX4189 are available in a tiny 16-pin QSOP package, and the MAX4190 is available in a space-saving 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$ package.

Applications

High-Definition Surveillance Video
High-Speed Switching/Multiplexing
Portable/Battery-Powered Video/Multimedia Systems
High-Speed Analog-to-Digital Buffers
Medical Imaging
High-Speed Signal Processing
Professional Cameras
CCD Imaging Systems
RGB Distribution Amplifiers
Pin Configuration appears at end of data sheet.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

- Low Supply Current: 1.5mA per Amplifier
- Fast Enable/Disable Times: 120ns/35ns
- Very Low Switching Transient: 45mVp-p
- High Speed

200MHz -3dB Small-Signal Bandwidth
(MAX4188, AvcL $\geq+2$)
250MHz -3dB Small-Signal Bandwidth
(MAX4189, AvcL $\geq+1$)
185MHz -3dB Small-Signal Bandwidth
(MAX4190, Avcl $\geq+2$)

- High Slew Rate

350V/ $\mu \mathrm{s}$ (MAX4188, AvcL $\geq+2$)
175V/ $\mu \mathrm{s}$ (MAX4189, AvcL $\geq+1$)

- Excellent Video Specifications
$85 \mathrm{MHz}-0.1 \mathrm{~dB}$ Gain Flatness (MAX4190)
$30 \mathrm{MHz}-0.1 \mathrm{~dB}$ Gain Flatness (MAX4189)
Differential Gain/Phase Errors
0.03\%/0.05 ${ }^{\circ}$ (MAX4188)
- Low-Power Disable Mode

Inputs Isolated, Outputs Placed in High-Z
Supply Current Reduced to $450 \mu \mathrm{~A}$ per Amplifier

- Fast Settling Time of 22ns to 0.1\%
- Low Distortion

70 dB SFDR ($\mathrm{f}_{\mathrm{c}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$, MAX4188)

- Available in Space-Saving Packages 16-Pin QSOP (MAX4188/MAX4189) 8-Pin μ MAX (MAX4190)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4188ESD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	$\mathrm{S} 14-1$
MAX4188EEE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\mathrm{E} 16-1$

Ordering Information continued at end of data sheet.
+Denotes lead-free package.
Selector Guide

PART	OPTIMIZED FOR:	AMPLIFIERS PER PKG.	PIN-PACKAGE
MAX4188	$A V \geq+2 V / V$	3	$14-$ pin SO, $16-$ pin QSOP
MAX4189	$A V \geq+1 V / V$	3	$14-$ pin SO, $16-$ pin QSOP
MAX4190	$A V \geq+2 V / V$	1	8-pin $\mu M A X / S O$

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{CC} to V_{EE})
IN_+, IN_-, DISABLE_ Voltage(VEE - 0.3V) to (VCC + 0.3V)
Differential Input Voltage (IN_+ to IN_-).............................. $\pm 1.5 \mathrm{~V}$
Maximum Current into IN_+ or IN_-.................................. $\pm 10 \mathrm{~mA}$
Output Short-Circuit Current Duration.........................Continuous
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).
471 mW
8-Pin μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(V_{C C}=+5 \mathrm{~V} ; \mathrm{V}_{E E}=-5 \mathrm{~V}\right.$; IN+=0V; $\overline{D I S A B L E}_{-} \geq 3.2 \mathrm{~V}$; MAX4188: $\mathrm{A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{F}=\mathrm{R}_{\mathrm{G}}=910 \Omega$ for $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=560 \Omega$ for $R_{L}=150 \Omega$; $M A X 4189$: $A_{V}=+1 V / V, R_{F}=1600 \Omega$ for $R_{L}=1 \mathrm{k} \Omega$ and $R_{F}=1100 \Omega$ for $R_{L}=150 \Omega ; M A X 4190: A_{V}=+2 V / V, R_{F}=R_{G}=$ 1300Ω for $R_{L}=1 k \Omega, R_{F}=R_{G}=680 \Omega$ for $R_{L}=150 \Omega ; T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage		Inferred from PSRR tests	± 2.25		± 5.5	V
Input Voltage Range	$V_{C M}$	Guaranteed by CMRR test	± 3.1	± 3.4		V
Input Offset Voltage	VOS	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 1)		± 1	± 6	mV
Input Offset Voltage Tempco	TCVos			± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Matching				± 1		mV
Input Bias Current (Positive Input)	IB_{+}			± 1	± 10	$\mu \mathrm{A}$
Input Bias Current (Negative Input)	IB-			± 2	± 12	$\mu \mathrm{A}$
Input Resistance (Positive Input)	RIN+	$-3.1 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 3.1 \mathrm{~V},\left\|\mathrm{~V}_{\text {IN }}+-\mathrm{V}_{\text {IN }}\right\| \leq 1 \mathrm{~V}$	100	350		$\mathrm{k} \Omega$
Input Resistance (Negative Input)	RIN-			300		Ω
Input Capacitance (Positive Input)	$\mathrm{Clin}^{\text {a }}$			2.5		pF
Common-Mode Rejection Ratio	CMRR	$-3.1 \mathrm{~V} \leq \mathrm{VCM} \leq 3.1 \mathrm{~V}$	56	68		dB
Open-Loop Transresistance	TR	$-3.1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 3.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1	7		$\mathrm{M} \Omega$
		$-2.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	0.3	2		
Output-Voltage Swing	VSW	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	± 3.5	± 4.0		V
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$	± 3.0	± 3.3		
Output Current	Iout	$\mathrm{R}_{\mathrm{L}}=30 \Omega$	± 20	± 55		mA
Output Short-Circuit Current	ISC			± 60		mA
Output Resistance	ROUT			0.2		Ω
Disabled Output Leakage Current	IOUT(OFF)	$\overline{\text { DISABLE }}_{-} \leq \mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {OUT }} \leq \pm 3.5 \mathrm{~V}$ (Note 2)		± 0.8	± 5	$\mu \mathrm{A}$
Disabled Output Capacitance	Cout(OFF)	$\overline{\text { DISABLE }}$ - $\leq \mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {OUT }} \leq \pm 3.5 \mathrm{~V}$		5		pF
$\overline{\text { DISABLE Low Threshold }}$	$\mathrm{V}_{\text {IL }}$	(Note 3)			$V_{\text {cC }}-3$	V
$\overline{\text { DISABLE High Threshold }}$	V_{IH}	(Note 3)	VCC - 1.8			V
$\overline{\text { DISABLE }}$ Input Current	IIN	$\mathrm{V}_{\mathrm{EE}} \leq \overline{\text { DISABLE }}_{-} \leq \mathrm{V}_{\text {CC }}$		0.1	2	$\mu \mathrm{A}$
Power-Supply Rejection Ratio (VCc)	PSRR+	$\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	60	75		dB
Power-Supply Rejection Ratio (VEE)	PSRR-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to -5.5V	60	73		dB
Quiescent Supply Current (per Amplifier)	Is	$\mathrm{R}_{\mathrm{L}}=$ open		1.5	1.85	mA
Disabled Supply Current (per Amplifier)	IS(OFF)	$\overline{\text { DISABLE_- }} \leq \mathrm{V}_{\text {IL }}, \mathrm{R}_{\mathrm{L}}=$ open		0.45	0.65	mA

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

DC ELECTRICAL CHARACTERISTICS—Single Supply

$\left(\mathrm{VCC}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{IN}+=2.5 \mathrm{~V}\right.$; $\overline{\mathrm{DISABLE}}_{-} \geq 3.2 \mathrm{~V}$; RL to $\mathrm{VCC} / 2 ; \mathrm{MAX4188}: \mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{RF}_{\mathrm{F}}=\mathrm{RG}_{\mathrm{G}}=1.1 \mathrm{k} \Omega$ for $\mathrm{RL}=1 \mathrm{k} \Omega$ and $\mathrm{RF}=$ $R_{G}=620 \Omega$ for $R_{L}=150 \Omega$; MAX4189: $A_{V}=+1 V / N, R_{F}=1500 \Omega$ for $R_{L}=1 \mathrm{k} \Omega$ and $R_{F}=1600 \Omega$ for $R_{L}=150 \Omega ; M A X 4190: A V=+2 V / V$, $R_{F}=R_{G}=1300 \Omega$ for $R_{L}=1 k \Omega, R_{F}=R_{G}=680 \Omega$ for $R_{L}=150 \Omega ; T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage		Inferred from PSRR tests	4.5		5.5	V
Input Voltage Range	VCM	Guaranteed by CMRR test	$\begin{gathered} 1.6 \text { to } \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 1.3 \text { to } \\ 3.7 \end{gathered}$		V
Input Offset Voltage	Vos	$\mathrm{V}_{\text {CM }}=2.5 \mathrm{~V}$ (Note 1)		± 1.5	± 6.0	mV
Input Offset Voltage Tempco	TCvos			± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Matching				± 1		mV
Input Bias Current (Positive Input)	$1 \mathrm{~B}+$			± 1	± 10	$\mu \mathrm{A}$
Input Bias Current (Negative Input)	IB-			± 2	± 12	$\mu \mathrm{A}$
Input Resistance (Positive Input)	RIN+	$1.6 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 3.4 \mathrm{~V},\left\|\mathrm{~V}_{\text {IN }+}-\mathrm{V}_{\text {IN }}\right\| \leq 1 \mathrm{~V}$	100	350		k Ω
Input Resistance (Negative Input)	RIN-			300		Ω
Input Capacitance (Positive Input)	Cin			2.5		pF
Common-Mode Rejection Ratio	CMRR	$1.5 \mathrm{~V} \leq \mathrm{VCM} \leq 3.5 \mathrm{~V}$	48	65		dB
Open-Loop Transresistance	TR	$1.3 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 3.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1.0	6.5		$\mathrm{M} \Omega$
		$1.45 \mathrm{~V} \leq$ VOUT $\leq 3.55 \mathrm{~V}, \mathrm{RL}=150 \Omega$	0.2	1.0		
Output-Voltage Swing	Vsw	$R \mathrm{~L}=1 \mathrm{k} \Omega$	$\begin{gathered} 1.2 \text { to } \\ 3.8 \end{gathered}$	$\begin{gathered} 0.9 \text { to } \\ 4.1 \end{gathered}$		V
		$R L=150 \Omega$	$\begin{gathered} 1.4 \text { to } \\ 3.6 \end{gathered}$	$\begin{gathered} 1.15 \text { to } \\ 3.85 \end{gathered}$		
Output Current	Iout	$\mathrm{R}_{\mathrm{L}}=30 \Omega$	± 16	± 28		mA
Output Short-Circuit Current	Isc			± 50		mA
Output Resistance	Rout			0.2		Ω
Disabled Output Leakage Current	IoUt(OFF)			0.8	± 5	$\mu \mathrm{A}$
Disabled Output Capacitance	COUT(OFF)			5		pF
$\overline{\text { DISABLE Low Threshold }}$	$\mathrm{V}_{\text {IL }}$	(Note 3)			CC-3	V
$\overline{\text { DISABLE High Threshold }}$	V_{IH}	(Note 3)	VCC - 1.8			V
$\overline{\text { DISABLE }}$ Input Current	IIN	$\mathrm{OV} \leq \overline{\text { DISABLE }}$ - V_{CC}		0.1	2	$\mu \mathrm{A}$
Power-Supply Rejection Ratio (VCc)	PSRR+	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	60	75		dB
Quiescent Supply Current (per Amplifier)	Is	$R \mathrm{~L}=$ open		1.5	1.85	mA
Disabled Supply Current (per Amplifier)	IS(OFF)	$\overline{\text { DISABLE }}_{-} \leq \mathrm{V}_{\text {IL }}, \mathrm{R}_{\mathrm{L}}=$ open		0.45	0.65	mA

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4188)
$\left(V_{C C}=+5 \mathrm{~V}, V_{E E}=-5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}, \overline{D I S A B L E}_{-} \geq 3 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=910 \Omega\right.$ for $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ or $\mathrm{RF}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=560 \Omega$ for $\mathrm{R}_{\mathrm{L}}=150 \Omega$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4189)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}\right.$, $\overline{\mathrm{DISABLE}}-\geq 3 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}, R_{F}=1600 \Omega$ for $R_{L}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{F}=1100 \Omega$ for $\mathrm{R}_{\mathrm{L}}=150 \Omega$; $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BW-3dB	$\mathrm{R} \mathrm{L}=1 \mathrm{k} \boldsymbol{\Omega}$		250		MHz
		$R \mathrm{~L}=150 \Omega$		210		
Peaking		$\mathrm{RL}=1 \mathrm{k} \Omega$		1.4		dB
		$R \mathrm{~L}=150 \Omega$		0.15		
Bandwidth for 0.1dB Flatness	BW0.1dB	$\mathrm{RL}=1 \mathrm{k} \Omega$		7		MHz
		$R \mathrm{~L}=150 \Omega$		30		
Large-Signal -3dB Bandwidth	BWLS	$V_{\text {OUT }}=2 V_{\text {P-P }}$	$\mathrm{RL}=1 \mathrm{k} \Omega$	60		MHz
			$R \mathrm{~L}=150 \Omega$	55		
Slew Rate	SR	$\begin{aligned} & \text { Vout }=4 \mathrm{~V} \text { step, } \\ & R_{L}=150 \Omega \end{aligned}$	Positive slew	175		V/us
			Negative slew	150		
Settling Time to 0.1\%	ts	Vout $=4 \mathrm{~V}$ step		28		ns
Rise/Fall Time		Vout $=4 \mathrm{~V}$ step	Rise time	20		ns
			Fall time	22		
Spurious-Free Dynamic Range	SFDR	$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { VOUT }=2 \mathrm{VP-P} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	65		dB
			$R \mathrm{~L}=150 \Omega$	51		
Second Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { VOUT }=2 \mathrm{VP-P} \end{aligned}$	$\mathrm{RL}=1 \mathrm{k} \Omega$	-65		dBc
			$R \mathrm{~L}=150 \Omega$	-63		
Third Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{VOUT}=2 \mathrm{VP-P} \end{aligned}$	$\mathrm{RL}=1 \mathrm{k} \Omega$	-70		dBc
			$R \mathrm{~L}=150 \Omega$	-51		
Differential Phase Error	DP	NTSC	$R_{L}=1 \mathrm{k} \Omega$	0.02		degrees
			$R \mathrm{~L}=150 \Omega$	0.66		
Differential Gain Error	DG	NTSC	$R_{L}=1 \mathrm{k} \Omega$	0.07		\%
			$R \mathrm{~L}=150 \Omega$	0.18		
Input Noise-Voltage Density	e_{n}	$\mathrm{f}=10 \mathrm{kHz}$		2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise-Current Density	in	$\mathrm{f}=10 \mathrm{kHz}$	Positive input	4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
			Negative input	5		
Output Impedance	Zout	$\mathrm{f}=10 \mathrm{MHz}$		4		Ω
Crosstalk		$\mathrm{f}=10 \mathrm{MHz}$, input referred		-57		dB
All Hostile Off-Isolation		$f=10 \mathrm{MHz}$, input referred		-55		dB
Gain Matching to 0.1dB				24		MHz
Amplifier Enable Time	ton	Delay from $\overline{\text { DISABLE }}$ to 90% of VOUT, $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		120		ns
Amplifier Disable Time	tOFF	Delay from $\overline{\text { DISAB }}$ $V_{\mathrm{IN}}=0.5 \mathrm{~V}$	10% of Vout,	40		ns
Disable/Enable Switching Transient		Positive transient		70		mV
		Negative transient		110		

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

AC \& DYNAMIC PERFORMANCE—Dual Supplies (MAX4190)
$\left(V_{C C}=+5 \mathrm{~V}, V_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}, \mathrm{AV}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V} ; \mathrm{R}_{F}=\mathrm{R}_{\mathrm{G}}=1300 \Omega\right.$ for $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{F}=\mathrm{R}_{\mathrm{G}}=680 \Omega$ for $\mathrm{R}_{\mathrm{L}}=150 \Omega$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWss	$\mathrm{RL}=1 \mathrm{k} \Omega$		185		MHz
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		150		
Peaking		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		0.1		dB
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		0.1		
Bandwidth for 0.1dB Flatness	BWLS	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		85		MHz
		RL $=150 \mathrm{k} \Omega$		75		
Large-Signal -3dB Bandwidth	BWLS	$V_{O}=2 V_{P-P}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	95		MHz
			RL $=150 \Omega$	95		
Slew Rate	SR	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=4 \mathrm{~V} \text { step, }, \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	Positive slew	340		V/us
			Negative slew	270		
Settling Time to 0.1\%	ts	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ step		22		ns
Rise/Fall Time	tR	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=4 \mathrm{~V} \text { step, } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	Rise time	10		ns
	t_{F}		Fall time	12		
Spurious-Free Dynamic Range		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	61		dB
			$R \mathrm{~L}=150 \Omega$	55		
Second Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	-65		dBc
			$R \mathrm{~L}=150 \Omega$	-55		
Third Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	-73		dBc
			$\mathrm{R}_{\mathrm{L}}=150 \Omega$	-61		
Differential Gain Error	DG	NTSC	$R \mathrm{~L}=1 \mathrm{k} \Omega$	0.03		degrees
			$\mathrm{R}_{\mathrm{L}}=150 \Omega$	0.07		
Differential Phase Error	DP	NTSC	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.06		degrees
			RL $=150 \Omega$	0.45		
Input Noise-Current Density		$\mathrm{f}=10 \mathrm{kHz}$	Positive input	4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
			Negative input	5		
Input Noise-Voltage Density	e_{n}	$\mathrm{f}=10 \mathrm{kHz}$		2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Output Impedance	ZOUT	$f=10 \mathrm{MHz}$		4		Ω
All Hostile Off-Isolation		$\mathrm{f}=10 \mathrm{MHz}$, input referred		-60		dB
Turn-On Time from DISABLE	ton			120		ns
Turn-Off Time from DISABLE	tofF			35		ns
Disable/Enable Switching Transient	BWLS	Positive transient		30		mV
		Negative transient		15		

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4188)

$\left(V_{C C}=+5 \mathrm{~V}, V_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{~V}, \overline{D I S A B L E}_{-} \geq 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ to $\mathrm{VCC} / 2, \mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{RF}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=1.1 \mathrm{k} \Omega$ for $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{C C} / 2$ and $\mathrm{RF}_{F}=\mathrm{R}_{\mathrm{G}}$ $=620 \Omega$ for $R_{L}=150 \Omega ; \mathrm{T}_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BW-3dB	$\mathrm{RL}=1 \mathrm{k} \Omega$		185		MHz
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		145		
Peaking		$R \mathrm{~L}=1 \mathrm{k} \Omega$		0.1		dB
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		0.1		
Bandwidth for 0.1dB Flatness	BW 0.1 dB	$\mathrm{RL}=1 \mathrm{k} \Omega$		110		MHz
		$R_{L}=150 \Omega$		65		
Large-Signal -3dB Bandwidth	BWLS	VOUT $=2 \mathrm{VPP}_{\text {P-P }}$	$\mathrm{RL}=1 \mathrm{k} \Omega$	80		MHz
			$R_{L}=150 \Omega$	80		
Slew Rate	SR	$\begin{aligned} & \text { Vout }=2 \mathrm{~V} \text { step, } \\ & \text { RL }=150 \Omega \end{aligned}$	Positive slew	300		V/us
			Negative slew	230		V/us
Settling Time to 0.1\%	ts	Vout $=2 \mathrm{~V}$ step		20		ns
Rise/Fall Time		Vout $=2 \mathrm{~V}$ step	Rise time	8		ns
			Fall time	9		
Spurious-Free Dynamic Range	SFDR	$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { Vout }=2 \mathrm{~V}_{\text {P-P }} \end{aligned}$	$R \mathrm{~L}=1 \mathrm{k} \Omega$	66		dB
			$R \mathrm{~L}=150 \Omega$	56		
Second Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { Vout }=2 \mathrm{~V}_{\text {P-P }} \end{aligned}$	$\mathrm{RL}=1 \mathrm{k} \Omega$	-76		dBc
			$R \mathrm{~L}=150 \Omega$	-59		
Third Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { Vout }=2 \mathrm{~V}_{\text {P-P }} \end{aligned}$	$R_{L}=1 \mathrm{k} \Omega$	-66		dBc
			$R \mathrm{~L}=150 \Omega$	-56		
Differential Phase Error	DP	NTSC	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.06		degrees
			$R_{L}=150 \Omega$	0.34		
Differential Gain Error	DG	NTSC	$R \mathrm{~L}=1 \mathrm{k} \Omega$	0.02		\%
			$\mathrm{R}_{\mathrm{L}}=150 \Omega$	0.05		
Input Noise-Voltage Density	en	$\mathrm{f}=10 \mathrm{kHz}$		2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise-Current Density	in_{n}	$\mathrm{f}=10 \mathrm{kHz}$	Positive input	4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
			Negative input	5		
Output Impedance	Zout	$\mathrm{f}=10 \mathrm{MHz}$		4		Ω
Crosstalk		$f=10 \mathrm{MHz}$, input referred		-55		dB
All Hostile Off Isolation		$\mathrm{f}=10 \mathrm{MHz}$, input referred		-65		dB
Gain Matching to 0.1 dB				40		MHz
Amplifier Enable Time	ton	Delay from $\overline{\text { DISABLE }}$ to 90% of VOUT, $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$		120		ns
Amplifier Disable Time	tofF	Delay from DISABLE to 10% of Vout, VIN $=3 \mathrm{~V}$		35		ns
Disable/Enable Switching Transient		Positive transient		30		mV
		Negative transient		15		

Single/Triple, Low-Glitch, 250MHz, Current-

 Feedback Amplifiers with High-Speed Disable
AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4189)

 $R_{L}=150 \Omega ; T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BW-3dB	$\mathrm{RL}=1 \mathrm{k} \boldsymbol{\Omega}$		230		MHz
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		190		
Peaking		$R \mathrm{~L}=1 \mathrm{k} \Omega$		1.4		dB
		$R \mathrm{~L}=150 \Omega$		0.15		
Bandwidth for 0.1 dB Flatness	BW0.1dB	$\mathrm{RL}=1 \mathrm{k} \Omega$		7		MHz
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		40		
Large-Signal -3dB Bandwidth	BWLS	Vout $=2 V_{\text {P-P }}$	$\mathrm{RL}=1 \mathrm{k} \Omega$	50		MHz
			$\mathrm{R}_{\mathrm{L}}=150 \Omega$	45		
Slew Rate	SR	$\begin{aligned} & \text { Vout }=2 \mathrm{~V} \text { step, } \\ & R_{L}=150 \Omega \end{aligned}$	Positive slew	160		V/us
			Negative slew	135		
Settling Time to 0.1\%	ts	Vout $=2 \mathrm{~V}$ step		25		ns
Rise/Fall Time		Vout $=2 \mathrm{~V}$ step	Rise time	12		ns
			Fall time	15		
Spurious-Free Dynamic Range	SFDR	$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{VOUT}=2 \mathrm{VP-P} \end{aligned}$	$\mathrm{RL}=1 \mathrm{k} \Omega$	57		dB
			$R_{L}=150 \Omega$	47		
Second Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { Vout }=2 \mathrm{VP-P} \end{aligned}$	$R \mathrm{~L}=1 \mathrm{k} \Omega$	-58		dBc
			$R \mathrm{~L}=150 \Omega$	-54		
Third Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{VOUT}=2 \mathrm{VP-P} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	-57		dBc
			$R \mathrm{~L}=150 \Omega$	-47		
Differential Phase Error	DP	NTSC	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.04		degrees
			$R \mathrm{~L}=150 \Omega$	0.66		
Differential Gain Error	DG	NTSC	$\mathrm{RL}=1 \mathrm{k} \Omega$	0.06		\%
			$R \mathrm{~L}=150 \Omega$	0.17		
Input Noise-Voltage Density	en	$\mathrm{f}=10 \mathrm{kHz}$		2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise-Current Density	in	$\mathrm{f}=10 \mathrm{kHz}$	Positive input	4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
			Negative input	5		
Output Impedance	ZOUT	$\mathrm{f}=10 \mathrm{MHz}$		4		Ω
Crosstalk		$\mathrm{f}=10 \mathrm{MHz}$, input referred		-57		dB
All Hostile Off-Isolation		$f=10 \mathrm{MHz}$, input referred		-55		dB
Gain Matching to 0.1dB				25		MHz
Amplifier Enable Time	ton	Delay from DISABLE to 90% of VOUT, $V_{I N}=3 \mathrm{~V}$		120		ns
Amplifier Disable Time	tofF	Delay from $\overline{\text { DISABLE }}$ to 10% of Vout, $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$		40		ns
Disable/Enable Switching Transient		Positive transient		70		mV
		Negative transient		110		

Note 1: Input Offset Voltage does not include the effect of IBIAS flowing through RF/RG
Note 2: Does not include current through external feedback network.
Note 3: Over operating supply-voltage range.

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

AC \& DYNAMIC PERFORMANCE-Single Supply (MAX4190)

$\left(V_{C C}=+5 V, V_{E E}=0 V, V_{I N}=0 V, A V=+2 V / V\right.$; $R_{F}=R_{G}=1500 \Omega$ for $R_{L}=1 \mathrm{k} \Omega$ and $R_{F}=R_{G}=750 \Omega$ for $R_{L}=150 \Omega$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BW-3dB	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		165		MHz
		$R \mathrm{~L}=150 \Omega$		135		
Peaking		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		0.1		dB
		$R \mathrm{~L}=150 \Omega$		0.1		
Bandwidth for 0.1dB Flatness	BW0.1dB	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		70		MHz
		$R \mathrm{~L}=150 \Omega$		65		
Large-Signal -3dB Bandwidth	BWLS	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	75		MHz
			RL $=150 \Omega$	75		
Slew Rate	SR	$\begin{aligned} & V_{O}=2 \mathrm{~V} \text { step, } \\ & R_{L}=150 \Omega \end{aligned}$	Positive slew	290		V/ $/ \mathrm{s}$
			Negative slew	220		
Settling Time to 0.1\%	ts	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ step		20		ns
Rise/Fall Time	trt_{F}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V} \text { step, } \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	Rise time	8		ns
			Fall time	9		
Spurious-Free Dynamic Range		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	59		dB
			$R \mathrm{~L}=150 \Omega$	55		
Second Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	-59		dBc
			$\mathrm{R}_{\mathrm{L}}=150 \Omega$	-55		
Third Harmonic Distortion		$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$R \mathrm{~L}=1 \mathrm{k} \Omega$	-68		dBc
			$R_{L}=150 \Omega$	-60		
Differential Gain Error	DG	NTSC	$\mathrm{RL}=1 \mathrm{k} \Omega$	0.02		\%
			$\mathrm{R}_{\mathrm{L}}=150 \Omega$	0.08		
Differential Phase Error	DP	NTSC	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.07		degrees
			$R \mathrm{~L}=150 \Omega$	0.43		
Input Noise-Voltage Density		$\mathrm{f}=10 \mathrm{kHz}$		2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise-Current Density	in	$\mathrm{f}=10 \mathrm{kHz}$	Positive input	4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
			Negative input	5		
Output Impedance	ZOUT	$\mathrm{f}=10 \mathrm{MHz}$		4		Ω
All Hostile Off-Isolation		$f=10 \mathrm{MHz}$, input referred, $R L=150 \Omega$		-60		dB
Turn-On Time from $\overline{\text { DISABLE }}$	ton			120		ns
Turn-Off Time from DISABLE	toff			35		ns
Disable/Enable Switching Transient	BWLS	Positive transient		30		mV
		Negative transient		15		

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX4189 SMALL-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES)

MAX4188 LARGE-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES)

MAX4188 SMALL-SIGNAL GAIN MATCHING vs. FREQUENCY

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX4189 LARGE-SIGNAL GAIN vs. FREQUENCY (SINGLE SUPPLY)

MAX4188 HARMONIC DISTORTION vs. FREQUENCY (SINGLE SUPPLY)

MAX4189 HARMONIC DISTORTION vs. FREQUENCY (SINGLE SUPPLY)

MAX4189 SMALL-SIGNAL GAIN MATCHING vs. FREQUENCY

MAX4188 CROSSTALK vs. FREQUENCY (DUAL SUPPLIES)

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{VEE}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

INPUT OFFSET VOLTAGE (VoS) vs. TEMPERATURE

TOTAL VOLTAGE-NOISE DENSITY vs. FREQUENCY (INPUT REFERRED)

OUTPUT IMPEDANCE
vs. FREQUENCY (DUAL SUPPLIES)

INPUT BIAS CURRENT
vs. TEMPERATURE

-3dB BANDWIDTH vs. INPUT AMPLITUDE

SUPPLY CURRENT PER AMPLIFIER vs. TEMPERATURE

DISABLED SUPPLY CURRENT PER AMPLIFIER vs. TEMPERATURE

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

INAL PULSE RESPONSE

MAX4188 ENABLE/DISABLE RESPONSE

MAX4188 SMALL-SIGNAL PULSE RESPONSE (WITH Cload)

$A_{V}=+2 V / N, R_{F}=R_{G}=910 \Omega, R_{L}=1 \mathrm{k} \Omega, C_{L}=47 \mathrm{pF}$

MAX4189 POWER-ON RESPONSE

MAX4188 LARGE-SIGNAL PULSE RESPONSE
 Feedback Amplifiers with High-Speed Disable

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX4189
MAX4189
SMALL-SIGNAL PULSE RESPONSE

$A_{V}=+1 V N, R_{F}=1.1 \mathrm{k} \Omega, R_{L}=150 \Omega$

MAX4188 SWITCHING TRANSIENT

100ns/div
$A_{V}=+2 V / V, R_{F}=910 \Omega, R_{L}=1 \mathrm{k} \Omega, V_{I N}=0$

MAX4189 SWITCHING TRANSIENT

$A V=+1 V / V, R_{F}=1.6 k \Omega, R_{L}=1 k \Omega, V_{I N}=0$

MAX4189
LARGE-SIGNAL PULSE RESPONSE

$A_{V}=+1 V / N, R_{F}=1.1 \mathrm{k} \Omega, R_{L}=150 \Omega$

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

PIN			NAME	FUNCTION
MAX4188/MAX4189		MAX4190		
so	QSOP	SO/ $/$ MAX		
1	1	-	$\overline{\text { DISABLE }}$	Disable Control Input for Amplifier 1. Amplifier 1 is enabled when $\overline{\text { DISABLE1 }} \geq\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}\right)$ and disabled when $\overline{\text { DISABLE1 }} \leq\left(\mathrm{V}_{C C}-3 \mathrm{~V}\right)$.
2	2	-	DISABLE2	Disable Control Input for Amplifier 2. Amplifier 2 is enabled when $\overline{\text { DISABLE2 }} \geq(\mathrm{VCC}-2 \mathrm{~V})$ and disabled when $\overline{\text { DISABLE2 }} \leq\left(\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}\right)$.
3	3	-	DISABLE3	Disable Control Input for Amplifier 3. Amplifier 3 is enabled when $\overline{\text { DISABLE3 }} \geq\left(\mathrm{V}_{C C}-2 \mathrm{~V}\right)$ and disabled when $\overline{\text { DISABLE3 }} \leq\left(\mathrm{V}_{C C}-3 \mathrm{~V}\right)$.
4	4	7	Vcc	Positive Power Supply. Connect V cc to +5 V .
5	5	-	\|N1+	Amplifier 1 Noninverting Input
6	6	-	IN1-	Amplifier 1 Inverting Input
7	7	-	OUT1	Amplifier 1 Output
-	8,9	1,5	N.C.	No Connection. Not internally connected.
8	10	-	OUT3	Amplifier 3 Output
9	11	-	IN3-	Amplifier 3 Inverting Input
10	12	-	1N3+	Amplifier 3 Noninverting Input
11	13	4	Vee	Negative Power Supply. Connect VEE to -5V or to ground for single-supply operation.
12	14	-	\|N2+	Amplifier 2 Noninverting Input
13	15	-	IN2-	Amplifier 2 Inverting Input
14	16	-	OUT2	Amplifier 2 Output
-	-	2	IN-	Amplifier Inverting Input
-	-	3	$1 \mathrm{~N}+$	Amplifier Noninverting Input
-	-	6	OUT	Amplifier Output
-	-	8	DISABLE	Disable Control Input. Amplifier is enabled when $\overline{\text { DISABLE }} \geq$ (VCC - 2V) and disabled when DISABLE $\leq\left(V_{C C}-3 V\right)$.

Detailed Description

The MAX4188/MAX4189/MAX4190 are very low-power, current-feedback amplifiers featuring bandwidths up to $250 \mathrm{MHz}, 0.1 \mathrm{~dB}$ gain flatness to 80 MHz , and low differential gain (0.03%) and phase $\left(0.05^{\circ}\right)$ errors. These amplifiers achieve very high bandwidth-to-power ratios while maintaining low distortion, wide signal swing, and excellent load-driving capabilities. They are optimized for $\pm 5 \mathrm{~V}$ supplies but are also fully specified for single +5 V operation. Consuming only 1.5 mA per amplifier, these devices have $\pm 55 \mathrm{~mA}$ output current drive capability and achieve low distortion even while driving 150Ω loads.

Wide bandwidth, low power, low differential phase/gain error, and excellent gain flatness make the MAX4188 family ideal for use in portable video equipment such as video cameras, video switchers, and other batterypowered equipment. Their two-stage design provides higher gain and lower distortion than conventional sin-gle-stage, current-feedback amplifiers. This feature, combined with a fast settling time, makes these devices suitable for buffering high-speed analog-to-digital converters.
The MAX4188/MAX4189/MAX4190 have a high-speed, low-power disable mode that is activated by driving the amplifiers' DISABLE input low. In the disable mode, the

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

amplifiers achieve very high isolation from input to output (65 dB at 10 MHz), and the outputs are placed into a highimpedance state. These amplifiers achieve low switch-ing-transient glitches (<45mVP-P) when switching between enable and disable modes. Fast enable/disable times ($120 \mathrm{~ns} / 35 \mathrm{~ns}$), along with high off-isolation and low switching transients, allow these devices to be used as high-performance, high-speed multiplexers. This is achieved by connecting the outputs of multiple amplifiers together and controlling the DISABLE inputs to enable one amplifier and disable all others. The disabled amplifiers present a very light load ($1 \mu \mathrm{~A}$ leakage current and 3.5 pF capacitance) to the active amplifier's output. The feedback network impedance of all the disabled amplifiers must still be considered when calculating the total load on the active amplifier output. Figure 1 shows an application circuit using the MAX4188 as a $3: 1$ video multiplexer.
The DISABLE_ logic threshold is typically $\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}$, independent of V_{EE}. For a single +5 V supply or dual $\pm 5 \mathrm{~V}$ supplies, the disable inputs are CMOS-logic compatible. The amplifiers default to the enabled mode if the DISABLE pin is left unconnected. If the DISABLE pin is left floating, take proper care to ensure that no high-frequency signals are coupled to this pin, as this may cause false triggering.

Applications Information

Theory of Operation

The MAX4188/MAX4189/MAX4190 are current-feedback amplifiers, and their open-loop transfer function is expressed as a transimpedance, $\Delta \mathrm{V}$ OUT/ $/ \Delta I \mathrm{I}$, or Tz . The frequency behavior of the open-loop transimpedance is similar to the open-loop gain of a voltage-mode feedback amplifier. That is, it has a large DC value and decreases at approximately 6 dB per octave.
Analyzing the follower with gain, as shown in Figure 2, yields the following transfer function:

Vout / VIN $=\mathrm{G} \times[(\mathrm{Tz}(\mathrm{S}) / \mathrm{Tz}(\mathrm{s})+\mathrm{G} \times(\mathrm{RIN}+\mathrm{RF})]$
where $G=A v C L=1+(R F / R G)$, and $R I N=1 / g m \cong$ 300Ω.
At low gains, $G \times \operatorname{RiN}<R F$. Therefore, the closed-loop bandwidth is essentially independent of closed-loop gain. Similarly $T_{Z}>R_{F}$ at low frequencies, so that:

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=G=1+\left(R_{F} / R_{G}\right)
$$

Figure 1. High-Speed 3:1 Video Multiplexer

Figure 2. Current-Feedback Amplifier

Single／Triple，Low－Glitch，250MHz，Current－ Feedback Amplifiers with High－Speed Disable

Layout and Power－Supply Bypassing

As with all wideband amplifiers，a carefully laid out PCB and adequate power－supply bypassing are essential to realizing the optimum AC performance of MAX4188／ MAX4189／MAX4190．The PC board should have at least two layers．Signal and power should be on one layer．A large low－impedance ground plane，as free of voids as possible，should be the other layer．With multi－ layer boards，locate the ground plane on a layer that incorporates no signal or power traces．

Do not use wire－wrap boards or breadboards and sockets．Wire－wrap boards are too inductive． Breadboards and sockets are too capacitive．Surface－ mount components have lower parasitic inductance and capacitance，and are therefore preferable to through－hole components．Keep lines as short as pos－ sible to minimize parasitic inductance，and avoid 90° turns．Round all corners．Terminate all unused amplifier inputs to ground with a 100Ω or 150Ω resistor．

The MAX4188／MAX4189／MAX4190 achieve a high degree of off－isolation（ 65 dB at 10 MHz ）and low crosstalk（ -55 dB at 10 MHz ）．The input and output sig－ nal traces must be kept from overlapping to achieve high off－isolation．Coupling between the signal traces of different channels will degrade crosstalk．The signal traces of each channel should be kept from overlap－ ping with the signal traces of the other channels．

Figure 3a．Inverting Gain Configuration

Adequate bypass capacitance at each supply is very important to optimize the high－frequency performance of these amplifiers．Inadequate bypassing will also degrade crosstalk rejection，especially with heavier loads．Use a $1 \mu \mathrm{~F}$ capacitor in parallel with a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor between each supply pin and ground to achieve optimum performance．The bypass capacitors should be located as close to the device as possible．A $10 \mu \mathrm{~F}$ low－ESR tantalum capacitor may be required to produce the best settling time and lowest distortion when large transient currents must be delivered to a load．

Choosing Feedback and Gain Resistors The optimum value of the external－feedback（RF）and gain－setting（ R_{G} ）resistors used with the MAX4188／ MAX4189／MAX4190 depends on the closed－loop gain and the application circuit＇s load．Table 1 lists the opti－ mum resistor values for some specific gain configura－ tions．One－percent resistor values are preferred to maintain consistency over a wide range of production lots．Figures 3a and 3b show the standard inverting and noninverting configurations．Note that the nonin－ verting circuit gain（Figure 3b）is 1 plus the magnitude of the inverting closed－loop gain．Otherwise，the two circuits are identical．

Figure 3b．Noninverting Gain Configuration

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

Table 1a. MAX4188 Recommended Component Values

COMPONENT/	DUAL SUPPLIES					SINGLE SUPPLY				
	$\mathrm{A} v=+2 \mathrm{~V} / \mathrm{V}$			$\begin{gathered} \mathrm{A}_{\mathrm{V}}=+5 \\ (\mathrm{~V} / \mathrm{V}) \end{gathered}$	$\begin{gathered} \mathrm{Av}=+10 \\ (\mathrm{~V} N) \\ \hline \mathrm{R}_{\mathrm{L}}= \\ 1 \mathrm{k} \Omega \end{gathered}$	$\mathrm{A} v=+2 \mathrm{~V} / \mathrm{V}$			$\begin{gathered} \mathrm{A} v=+5 \\ \mathrm{~V} / \mathrm{N} \end{gathered}$	$\begin{gathered} \hline A v=+10 \\ \mathrm{~V} / \mathrm{V} \end{gathered}$
	$\begin{aligned} & \mathrm{RL}= \\ & 1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 150 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{RL}= \\ & 100 \Omega \end{aligned}$			$\begin{aligned} & \mathrm{RL}_{\mathrm{L}}= \\ & 1 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} \mathrm{RLL}_{\mathrm{L}}= \\ 150 \Omega \end{gathered}$	$\begin{aligned} & R_{L}= \\ & 100 \Omega \end{aligned}$		
$\mathrm{R}_{\mathrm{F}}(\Omega)$	910	560	390	470	470	1.1k	620	430	470	470
RG (Ω)	910	560	390	120	51	1.1k	620	430	120	51
-3dB BW (MHz)	200	160	145	70	30	185	145	130	70	30

Table 1b. MAX4189 Recommended Component Values

$\begin{gathered} \text { COMPONENT/ } \\ \text { BW } \end{gathered}$	DUAL SUPPLIES			SINGLE SUPPLY		
	Av = +1 V / V			Av = +1V/V		
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$
$\mathrm{RG}(\Omega)$	1.6k	1.1k	680	1.5 k	1.6k	910
-3dB BW (MHz)	250	210	185	230	190	165

Table 1c. MAX4190 Recommended Component Values

COMPONENT/BW	DUAL SUPPLIES					SINGLE SUPPLY				
	$\mathrm{Al}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$			$\begin{gathered} \begin{array}{c} A v=+5 \\ (V / V) \end{array} \\ \hline R_{\mathrm{L}}= \\ 1 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} \mathrm{A} v=+10 \\ (\mathrm{~V} N) \end{gathered}$	$\mathrm{A}_{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}$			$\begin{gathered} \mathrm{Av}=+5 \\ \mathrm{~V} / \mathrm{N} \end{gathered}$	$\begin{gathered} \mathrm{Av}=+10 \\ \mathrm{~V} / \mathrm{N} \end{gathered}$
	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 1 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} R_{L}= \\ 150 \Omega \end{gathered}$	$\begin{aligned} & \mathrm{RL}_{\mathrm{L}}= \\ & 100 \Omega \end{aligned}$			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 150 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 100 \Omega \end{aligned}$		
RF (Ω)	1.3k	680	510	470	470	1.5k	750	510	470	470
$\mathrm{RG}(\Omega)$	1.3k	680	510	120	51	1.5k	750	510	120	51
-3dB BW (MHz)	185	180	135	70	30	165	135	125	70	30

DC and Noise Errors
Several major error sources must be considered in any op amp. These apply equally to the MAX4188/ MAX4189/MAX4190. Offset-error terms are given by the equation below. Voltage and current-noise errors are root-square summed and are therefore computed separately. In Figure 4, the total output offset voltage is determined by the following factors:

- The input offset voltage (VOS) times the closed-loop gain ($1=R_{F} / R_{G}$).
- The positive input bias current (I_{+}) times the source resistor (RS) (usually 50Ω or 75Ω), plus the negative input bias current (IB-) times the parallel combination of R_{G} and R_{F}. In current-feedback amplifiers, the input bias currents at the $\mathrm{IN}+$ and IN terminals do not track each other and may have opposite polarity, so there is no benefit to matching the resistance at both inputs.

The equation for the total DC error at the output is:

$$
V_{\text {OUT }}=\left[\left(l_{B+}\right) R_{S}+\left(l_{B-}\right)\left(R_{F} \| R_{G}\right)+V_{O S}\right]\left(1+\frac{R_{F}}{R_{G}}\right)
$$

Figure 4. Output Offset Voltage

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

The total output-referred noise voltage is:

$$
\begin{aligned}
& e_{n(\text { OUT })}=\left(1+\frac{R_{F}}{R_{G}}\right) x \\
& \sqrt{\left[\left(i_{n+}\right) R_{S}\right]^{2}+\left[\left(i_{n-}\right) R_{F} \| R_{G}\right]^{2}+\left(e_{n}\right)^{2}}
\end{aligned}
$$

The MAX4188/MAX4189/MAX4190 have a very low, $2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise voltage. The current noise at the positive input (in_{+}) is $4 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and the current noise at the inverting input is $5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$.
An example of the DC error calculations, using the MAX4188 typical data and typical operating circuit where $R_{F}=R_{G}=560 k \Omega\left(R_{F} \| R_{G}=280 \Omega\right)$, and $R S=37.5 \Omega$, gives the following:
$V_{\text {OUT }}=\left[\begin{array}{l}\left(\begin{array}{l}\left.1 \times 10^{-6}\right) \times 37.5+\left(2 \times 10^{-6}\right) 280 \\ +1.5 \times 10^{-3}\end{array}\right] \times(1+1)\end{array}\right.$
$V_{\text {OUT }}=4.1 \mathrm{mV}$
Calculating the total output noise in a similar manner yields:

$$
\begin{aligned}
& e_{n(\text { OUT })}=(1+1) \sqrt{\left(4 \times 10^{-12} \times 37.5\right)^{2}+} \\
& e_{n(O U T)}=4.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}
\end{aligned}
$$

Figure 5. Video Line Driver Application

With a 200MHz system bandwidth, this calculates to $68 \mu \mathrm{~V}_{\mathrm{RMS}}$ (approximately $408 \mu \mathrm{VP}-\mathrm{P}$, choosing the sixsigma value).

Video Line Driver
The MAX4188/MAX4189/MAX4190 are well suited to drive coaxial transmission lines when the cable is terminated at both ends (Figure 5). Cable frequency response can cause variations in the signal's flatness. See Table 1 for optimum RF and RG values.

Driving Capacitive Loads

The MAX4188/MAX4189/MAX4190 are optimized for AC performance. Reactive loads decrease phase margin and may produce excessive ringing and oscillation. Unlike most high-speed amplifiers, the MAX4188/ MAX4189/MAX4190 are tolerant of capacitive loads up to 50 pF . Capacitive loads greater than 50 pF may cause ringing and oscillation. Figure 6a shows a circuit that eliminates this problem. Placing the small (usually 15Ω to 33Ω) isolation resistor, RS, before the reactive load prevents ringing and oscillation. At higher capacitive loads, the interaction of the load capacitance and isolation resistor controls AC performance. Figures 6b and 6 c show the MAX4188 and MAX4189 frequency response with a 100pF capacitive load. Note that in each case, gain peaking is substantially reduced when the 20Ω resistor is used to isolate the capacitive load from the amplifier output.

Figure 6a. Using an Isolation Resistor (RS) for High Capacitive Loads

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

Figure 6b. Normalized Frequency Response with 100pF Capacitive Load

MAX4188/4189

TRANSISTOR COUNT: 336
MAX4190
TRANSISTOR COUNT: 112
SUBSTRATE CONNECTED TO VEE

C_Chip Information

Figure 6c. Normalized Frequency Response with 100pF Capacitive Load

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4189ESD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	S14-1
MAX4189EEE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\mathrm{E} 16-1$
MAX4190ESA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\mathrm{S} 8-2$
MAX4190EUA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}-8$	$\mathrm{U} 8-1$

+Denotes lead-free package.

Pin Configurations

Single／Triple，Low－Glitch，250MHz，Current－ Feedback Amplifiers with High－Speed Disable

Package Information

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NOTES:
1). D \& E DO NDT INCLUDE MILD FLASH GR PRDTRUSIONS.
2). MILD FLASH GR PRUTRUSIDNS NDT TI EXCEED . $006^{\prime \prime \prime}$ PER SIDE.
3). CONTROLLING DIMENSIDNS: INCHES
4). MEETS JEDEC MD137.

Single/Triple, Low-Glitch, 250MHz, CurrentFeedback Amplifiers with High-Speed Disable

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 1: 1-12, 15-17, 19-23

